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Flash floods are a dangerous, but common, summertime occurrence in southern Utah.  A 
record of historical flash flooding was compiled to determine the frequency of events 
from 1959 to 2003.  A complete data set, consisting of both historical flash flooding days 
and non-event days, was assembled; a trial of the 2003 flash flood season assessed 
which variables and which data source to use in studying the eight flash flood seasons 
between 1996 and 2003.  Neural networks were employed to determine the relationship 
between the atmospheric state and a particular day’s flash flood severity.  The final 
neural network found precipitable water, low-level relative humidity, convective 
available potential energy (CAPE), the 500hPa height change between 12Z and 0Z, and 
the previous day’s flash flood severity to be the important determinants of flash flooding 
in southern Utah.  Verification of the final neural network algorithm was completed using 
the flash flood record of 2004 and 2005.  Improvements in flash flood prediction, based 
on the results of this study, will soon be implemented by weather forecasters at the 
NWSFO in Salt Lake City. 
 
Introduction 
Flash flooding is a natural hazard in southern Utah.  The terrain of the lower elevations in 
this region is characterized by slick-rock topography.  Due to lack of vegetation and soil, 
rainfall quickly runs off this nearly impermeable, rocky terrain and collects to form flash 
floods. Erosion processes have formed very narrow ‘slot’ canyons; rain can fill these 
narrow recesses quickly, resulting in severe flash floods. Due to the rapid runoff, rain from 
distant mountains can cause flooding of desert canyons as far as 20 to 30 miles from the 
rainfall. 
 
In 2003, 23 reported flash flood events, all of which occurred in the southern half of Utah, 
caused more than $1.7 million in property damage1 and put visitors to the region’s five 
National Parks and numerous state parks and monuments2 at risk.  State and federal land 
managers must therefore inform visitors of the significant threat posed by flash floods, 
and must decide whether to close dangerous canyon hiking areas when thunderstorms 
threaten.  With this in mind, the National Weather Service Forecast Office (NWSFO) in Salt 
Lake City has provided a daily Flash Flood Potential Rating (FFPR) for southern Utah since 
the mid-1990s.  The FFPR is read on the NOAA All Hazards Radio and is disseminated as a 
text product via the internet3.  The FFPR provides land managers with forecasts of the 
flash flood potential for a given day, with a lead time of 12 to 48 hours.  Unfortunately, 
                                                      
1 http://www.ncdc.noaa.gov 
2 Utah Division of Travel Development 
3 http://www.wrh.noaa.gov/saltlake/projects/ifp/html/ffp.php 
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the FFPR is quite subjective; classifications rely on a mixture of forecaster experience, an 
evaluation of the air mass properties based on forecast model data, and the previous 
day’s flash flood activity.   The goal of this study was to improve forecasting skill and 
develop a more quantitative flash flood prediction tool to replace the FFPR. 
 
 
Flash Flood Event Record 
Though the incidence of flash flooding in Utah has been well-documented since the 
1950s, until this study, no single document contained the complete record of flash flood 
events.  Thus, the first objective was to compile such a record.  Two data sources were 
used.  Monthly issues of Storm Data were used from 1959 to 1992.   The National Climatic 
Data Center (NCDC) U.S. Storm Events database4 yielded information for all flash flood 
events in the state of Utah, from 1993 to 2003.  Since most flash flooding occurs during the 
summer, the search for historical flash flood events was narrowed to the six months of 
each year between May 1st and October 31st.  Following Maddox et al (1980), each flash 
flood record contained the date, time, city and county (or where appropriate, a general 
location such as Zion National Park).  Approximate coordinates were assigned to each 
flash flood event.  Events were assigned a ‘region’ based on these coordinates:  
‘Southwest Utah’ (SW) was defined as the rectangle between 39.18ºN, 111.46ºW and 
37.00ºN, 114.00ºW; ‘southeast Utah’ (SE) was defined as the rectangle between 39.34ºN, 
109.00ºW and 37.00ºN, 111.46ºW. Figure 1 shows the two regions geographically.  Events 
that affected south-central Utah were assigned to one of the regions based on the area 
of predominant flooding. 
 
The complete record consisted of 290 flash flood events between 1959 and 2003.  As 
expected, most of the events occurred in southern Utah.  However, there were 32 
reported flash flood events in Salt Lake County, perhaps because of the influence of the 
dense population of the Salt Lake City area (see figure 2). Urbanization contributes to 
rapid runoff and flash flooding and the dense population contributes to the reporting 
frequency of these events.  Another notable feature of the flash flood record was that 
the number of reported events increased with time (see figure 3).  This trend may result 
from the fact that, as the population of and number of visitors to Utah has grown; so has 
the probability that flash flood events are witnessed. 
 
A continuous record of days, spanning multiple years, was compiled.  In the past, the 93-
day period between June 15th and September 15th defined the season of flash flood 
monitoring at the Salt Lake City NWSFO.  The same period has been used to delimit the 
flash flood ‘seasons’ throughout this study.  Days on which no flash flood events were 
reported in Utah were assigned a regional flash flood severity index (RFFSI) of ‘0’ in both 
the SW and SE regions.  Days during which at least one event was reported (between 
12PM and 2AM local time) were assigned two  severity indexes, one in SW and the other 
in SE Utah.  Event-day RFFSI values ranged from 1 to 4, and depended on the 
geographical extent of the flooding.  ‘1’ was assigned to days without any events in that 
region but at least one event elsewhere in Utah; ‘2’ was assigned to days when a single 
event was reported in that region; ‘3’ was assigned to days with two reported events, or, 
with flooding affecting much of a county; ‘4’ was assigned to days with severe flash 
flooding, affecting two or more of the counties in that region.    It should be noted that 
days on which events occurred in northern Utah were counted as ‘event’ days, such that 
the RFFSI = 1; however, flash flooding in southern Utah remained the subject of interest 
throughout the study. 

                                                      
4 http://www.ncdc.noaa.gov 
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The authors’ method of assigning two RFFSI values to each study day was somewhat 
subjective.  In some cases, it was unclear how many ‘events’ had occurred on a 
particular day, and in others the location of the flash flooding was hard to pinpoint.  
However, it was encouraging that, as the severity index increased, the number of days in 
each severity category decreased exponentially.  Specifically, in 45 years of flash flood 
data, there were 112 days with a SW Utah RFFSI of ‘1’, 52 days of ‘2’, 31 days of ‘3’ and 8 
days of ‘4’. 
 
Conducting an analysis of the atmospheric influence on flash flooding required access 
to meteorological data.  Two data sets were chosen as candidates for this study.  
Flagstaff, Arizona upper-air soundings provided a set of data and data-derived instability 
indexes (such as convective available potential energy (CAPE)) twice daily.  Flagstaff is 
located in northern Arizona but satisfies the criteria for “proximity soundings” (Brooks et al, 
1994; Rasmussen and Blanchard, 1998) given that the city is within 400km of all points in 
southern Utah and that, during the summertime, the low-level winds in this region tend to 
have a southerly component.  In other words, it is assumed that Flagstaff soundings have 
sampled the same air mass as that in the study area.  The University of Wyoming’s 
Department of Atmospheric Science website5 provided access to the sounding data.  
NCEP/NCAR global reanalysis data6 met the criterion of having sampled the air mass 
above southern Utah with more certainty, as its data points at 37.5ºN, 112.5ºW and 
37.5ºN, 110.0ºW, were located in SW and SE Utah, respectively.  The availability of distinct 
values at the two grid points was an especially convenient feature of the reanalysis data 
set. 
 
Meteorological variables were chosen based on previous studies of flash floods in the 
southwestern U.S.  Li et al (2001) found that the severe Las Vegas flash floods of 1999 
were correlated with very high values of precipitable water (PW) and CAPE.  Maddox et 
al (1980) noted the importance of high PW, high atmospheric instability values, low wind 
speeds and short-wave troughs; similarly, Doswell et al (1996) concluded that flash flood-
producing storms tended to be associated with deep, moist and slow-moving 
convection.  Until the present study, forecasters at the Salt Lake City NWSFO had primarily 
based their daily FFPR classifications on the presence of high values of PW, weak mid-
tropospheric winds and approaching short-wave troughs.  Table 1 lists the variables that 
were chosen at this initial stage; note that the zonal (u) and meridional (v) wind 
components were converted to wind speed and direction, in the case of the reanalysis 
data.  With the exception of the 12-hour height change at 500hPa (where 12Z values 
were subtracted from 0Z values) all of the variables were examined at 0Z the following 
day (that is, 6PM local time on the forecast day) in order to coincide with the time of 
peak flash flooding.   In addition, Julian (or calendar) day and the previous day’s RFFSI 
were included in this list of variables.   
 
It is likely that some of the variables listed in table 1 are not physically independent.  For 
instance, the low-level relative humidity undoubtedly relates to precipitable water 
values.  CAPE and LI, by definition, are negatively correlated to some degree.  However, 
the above variables are assumed to be statistically independent enough to provide 
meaningful information about their relationships to flash flood severity. 
 
Neural Network Analysis 
                                                      
5 http://weather.uwyo.edu/upperair/sounding.html 
6 http://www.cdc.noaa.gov/cdc/reanalysis 
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A trial study of the 2003 flash flood season directly compared the two data sets so as to 
assess which was the more reliable, and determined which variables could be 
eliminated from future study.  Neural network techniques were chosen to analyze the 
sounding and reanalysis data, because of their ability to capture non-linearity in input-
output relationships.  Though non-traditional, neural networks are not new to 
meteorology.  In particular, a recent study used a neural network to predict severe hail 
size, given the occurrence of severe hail (Marzban and Witt, 2001).  Not only did the 
authors find that their neural network statistically outperformed an existent weather radar 
hail size prediction algorithm, they also obtained high correlation coefficients for both 
their training and validation data sets.  These results encouraged the study of flash 
flooding via neural networks. 
 
The neural network software used in this study was the AI Trilogy package by Ward 
Systems Group7.  In this case, the input-output relationship was that of the atmospheric 
state to flash flood severity in southern Utah.  The NeuroShell Predictor program was 
chosen when continuous output was desired; the NeuroShell Classifier program was 
employed when discretized output was desired.  Genetic learning, that ‘breeds’ the 
data set to optimize the network’s solution, was used to train the neural network.  In 
general, the network ran for several hundred ‘generations’ in order to achieve the best 
result.  Upon completion, the software returned the relative importance of each of the 
variables involved.  Depending on the type of output selected, the software displayed 
the overall correlation of the timeseries of actual flash flood severity to that predicted by 
the neural network, or, the proportion of data rows that had been classified correctly.   
 
At this stage, NeuroShell Predictor was used to relate the meteorological variables to 
flash flood severity.  Training a neural network with the sounding data set yielded an 
overall correlation coefficient of approximately 0.7.  The 500hPa wind direction, CAPE 
and Julian day were found to be the most important predictors of flash flood severity, 
while LI, LFC and a weighted version of the Julian day (sin(JD/2)) were found to be of 
little importance.  500hPa winds were found to be more important than 700hPa winds.  
Since a measure of instability could not be easily retrieved from the reanalysis data, 
sounding-derived CAPE was added to the reanalysis data set to make it easier to 
compare to the sounding data set.  The reanalysis-plus-sounding-CAPE data set yielded 
the rather high correlation coefficient of 0.83.  Unfortunately, there was a lot of day to 
day and SW to SE variation in the reanalysis 500hPa wind data.   This led to doubts about 
the quality of these data, which were confirmed by the poor performance of both 
500hPa wind speed and direction in the neural network.  
 
Based on the findings of the 2003 flash flood season trial, it was concluded that the 
Flagstaff, Arizona soundings would likely provide more reliable and insightful information 
about the relationship between the atmospheric state and flash flood severity than 
would the reanalysis data.  Furthermore, the 700hPa wind speed and direction, LI and 
LFC were eliminated from any further study due to their apparently weak influence on 
flash flooding in southern Utah. 
 
It should be noted that the authors refer to flash flood severity as the output variable 
rather than ‘incidence’ (a binary option, with ‘0’ denoting non-event days and ‘1’ 
denoting days on which at least one event occurred).  The choice of severity over 
incidence was made because of initial trials of the neural network, in which the most 
important variables related to flash flood severity were those predicted by past 

                                                      
7 http://www.wardsystems.com 
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forecasting experience (CAPE and 500hPa wind speed), whereas those related to flash 
flood incidence (Julian day and the 500hPa temperature) were not. 
 
Seven years of atmospheric data, from 1996 to 2002, were added to the existing matrix of 
2003 flash flood-related data.  This larger study was restricted to eight years because 
Flagstaff, Arizona soundings only became available in time for the 1996 flash flood 
season.  With two data rows per day, 93 days per year and eight years, there were thus 
1488 rows of data available for analysis with the neural network.  The neural network was 
trained with all nine variables listed in table 2.  Precipitable water was obtained as the 
most important variable (see figure 4).  At 0.44, the overall correlation coefficient was 
much lower than it had been for the 2003 trial (0.70).  The low correlation coefficient may 
be related to the random nature of flash flooding; events may occur over a range of 
atmospheric conditions.  Another possibility is that two rows containing the same 
sounding data and yet, on some days, two different RFFSIs, may have confused the 
neural network.  For example, on July 28th 2003, the RFFSI was ‘3’ in SW Utah but ‘1’ in SE 
Utah. 
 
To avoid this possible confusion, the data were split into two groups.  Both groups 
contained the same set of meteorological data.  The first group used the daily SW RFFSI 
as the output variable; the second group used the SE RFFSI.  Figure 5 shows that training 
the neural network with the SW and SE groupings does not yield the same result.  
Furthermore, neither of the sets of results of figure 5 is similar to the results of figure 4, 
where the complete dataset was used to train the neural network. 
 
Problems with the RFFSI motivated the creation of a ‘combined’ severity index (CFFSI), 
categorizing each day’s flash flooding throughout southern Utah.  CFFSI was defined as 
follows:  ‘0’ was assigned to days when no flash flood events occurred in southern Utah; 
‘1’ was assigned to days when a single event was reported anywhere in southern Utah; 
‘2’ was assigned to days when two events were reported, or, when flash flooding 
affected much of a county; ‘3’ was assigned to days when severe flash flooding, 
affecting two or more counties, occurred.  Of the 744 days studied, there were 676 days 
rated as ‘0’, 49 rated as ‘1’, 15 rated as ‘2’, and 4 rated as ‘3’.  
 
The unexpected results of training the neural network with the Predictor software are 
shown in figure 6.  The temperature at 500hPa was found to be the most important 
parameter, overwhelming even the combination of the eight remaining variables.  The 
correlation coefficient of 0.31 was quite low.  When the same data matrix was applied to 
the Classifier program, however, 71% of the days studied were classified correctly (see 
figure 7).  PW, the 700hPa RH, the previous day’s CFFSI and CAPE were found to be the 
most important of the nine variables. 
 
Several subsets of the nine variables were tested with NeuroShell Classifier.  The objective 
of this testing was to maximize the proportion of days classified correctly by the software, 
while minimizing the number of variables needed to do so.  Figure 8 shows the set of 
variables that met the above criteria.  The numerical performance of the neural network 
is summarized in table 3.  This ‘best result’ neural network algorithm correctly identified 
79% of the ‘0’ days, 47% of the ‘1’ days, 40% of the ‘2’ days and none of the ‘3’ days; 
overall, 76% of days studied were classified correctly.  Note that the presence of the 
500mb wind speed makes virtually no difference to the neural network.  The wind speed 
has been included only to make the point that its importance in determining flash flood 
severity, as determined by the neural network, is much less than was previously thought. 
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Verification of Neural Network Algorithm 
The 2004 flash flood season was examined with the goal of testing the ‘best result’ 
algorithm discussed in the previous section.  This verification dataset consisted of Flagstaff 
sounding data for the 2004 flash flood season; sufficient data were available to run the 
neural network algorithm (with NeuroShell Run-Time) for 83 days.   
 
Flash flood activity was monitored throughout the 2004 flash flood season.  Each of 93 
days was assigned a flash flood severity index describing the activity in southern Utah.  In 
total, there were 8 event days and 85 non-event days.  Of the 83 days when sounding 
data, and thus neural network-derived CFFSIs, were available, 75 were non-event days, 
while 5 were assigned an actual flash flood severity of ‘1’ and 3 were assigned a severity 
of ‘2’.   
 
Table 4 shows the actual flash flood severity versus that calculated by the neural network 
algorithm.  60 of the 75 days in the ‘0’ category were classified correctly, while none of 
the eight events in categories ‘1’ and ‘2’ was correctly predicted by the algorithm.  
There were no severe flash flood days in 2004, defined as category ‘3’, either in actuality 
or as classified by the neural network.  Thus, 60 of the 83 days, approximately 73%, were 
modeled correctly by the algorithm. 
 
The procedure used for the 2004 flash flood season was repeated with data from the 
following year.  Table 5 compares the actual and neural network-calculated daily flash 
flood severities for the 2005 flash flood season.  There were 89 days for which sounding 
data were available; these included 7 days classified as ‘1’, 3 days classified as ‘2’ and 
one severe event day classified as ‘3’.  82% of non-event days and 18% of event days 
were classified correctly by the neural network algorithm; overall, 74% of study days were 
classified correctly. 
 
Algorithm Implementation and Future Work 
During the 2006 flash flood season, forecasters in Salt Lake City will have access to the 
‘best result’ neural network algorithm.  The input data necessary to run the algorithm will 
be gathered from the highest resolution forecast model available, at the grid point 
closest to Flagstaff, Arizona.  Use of model data will allow for assessment of the current 
day’s flash flood severity in southern Utah and for the prediction of this severity one to 
three days in advance.  If the additional information provided by the neural network 
algorithm is deemed useful to forecasters, running the algorithm will become part of daily 
operations in subsequent flash flood seasons and the FFPR will be revised so as to reflect 
the classification system developed in this study.   
 
Meanwhile, both the monitoring of flash flood activity and the collection of Flagstaff 
sounding data will continue through the 2006 flash flood season and beyond.  Expanding 
the verification dataset will be insightful in determining whether concerns about the 
algorithm’s accuracy noted in the 2004 and 2005 data, namely the slight bias toward 
overprediction and large number of missed events, are recurrent problems or simply 
result from too small a sample of event days. 
 
While 76% of days in the training dataset and 73% of days in the two-year validation 
dataset were classified correctly by the ‘best result’ neural network algorithm, the 
following alterations to the training dataset are likely to improve this performance:  First, 
500hPa wind speed should be removed from the list of input variables; its unimportance 
in determining flash flood severity has been illustrated above.  Second, the training 
dataset should be expanded to 10 years, so as to include data from the 2004 and 2005 
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flash flood seasons.  A final modification would further expand the training dataset by 
using sounding data prior to 1996.  Data both from Winslow, Arizona and from Desert 
Rock, Nevada are available, though these locations are further from southern Utah than 
is Flagstaff and thus may not reflect atmospheric conditions in the study area as well.  
 
Expansion of both the training and validation datasets will hopefully result in a neural 
network-based flash flood prediction tool that is adequately accurate for the needs of 
forecasters.  Although such an algorithm would provide input relevant to the ‘watch’ 
phase of flash flood forecasting (lead times of 12-24 hours), it would not be able to 
pinpoint the location of predicted flash flooding.  Additional detail about the location of 
flash floods could be obtained by repeating this study on a smaller scale.  NCEP/NCAR 
regional reanalysis data could be used to link atmospheric conditions in various flash 
flood-prone regions, including Washington county, with flash flood severity in this same 
region. 
 
Discussion 
Meteorological data were examined with a neural network to determine the 
quantitative relationship between the atmospheric state and daily flash flood severity in 
southern Utah.  The results of this analysis should reassure forecasters that their experience 
is indeed valuable.  The final neural network confirmed the importance of moist air (PW 
and RH at 700mb), unstable air (CAPE) and approaching short-wave troughs (12-hour 
500mb height change) in flash flood severity.  Nevertheless, there were two surprises as to 
the conditions that have significant impact on a coming day’s flash flood activity.  
Despite southern Utah’s rocky terrain and thus short memory for rainfall, the previous 
day’s flash flood severity was found to relate to the current day’s flooding.  Also surprising 
was the nonexistence of a relationship between low wind speeds and flash flood 
severity.  The authors have observed two mechanisms for the occurrence of flash floods 
in windy conditions.  Storms can form repeatedly and inundate a given area with rainfall 
even though individual storms quickly advect downwind.  Also, when cool air outflow 
boundaries from storm complexes become nearly stationary, storms will continually 
develop over the boundary as environmental flow is lifted by the boundary.  
 
The ‘best result’ neural network algorithm correctly identified the flash flood severity for a 
large proportion of the study days.  However, it should be noted that the network 
performed much better for the less severe days than for the days when severe flash 
flooding occurred.  That is, the neural network underclassified days in the ‘2’ or ‘3’ CFFSI 
categories.  Nevertheless, the neural network outperformed a linear regression model.  
The linear regression coefficients were computed using the same six variables as in the 
‘best result’ algorithm.  The regression model severely underclassified the meteorological 
dataset; all but two days were classified as non-event days (see table 6).  This result 
supports the use of neural networks in predicting flash floods, as well as the notion that 
flash flooding is a non-linear process. 
 
If the neural network algorithm presented earlier is deemed a success, it will likely 
become an additional dynamic layer in the Colorado Basin River Forecast Center’s Flash 
Flood Potential Index (FFPI; Jackson et al, 2005).  Furthermore, neural network-based 
analyses of sounding and reanalysis data, similar to that for southern Utah discussed in 
this report, could be conducted for northern Utah, northern Arizona and beyond.  
Making the process of flash flood prediction more quantitative will surely give more 
meaning to flash flood warnings and reduce the number of unpredicted flash flood 
events.  
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Figures 
 

 
Figure 1:  Study areas:  southwest (SW) and southeast (SE) Utah. 

 

Figure 2:  Reported number of flash flood events per county, 1959-2003.  Counties in 
southern Utah are shown as patterned bars. 
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Figure 3:  Reported number of flash floods per May-October season, 1959-2003. 
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Figure 4:  NeuroShell Predictor results using RFFSI and sounding dataset. 
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b

SE Utah
FF Predictor (Severity);  Sounding; Correlation = 0.34 
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Figure 5:  NeuroShell Predictor results with two groupings of RFFSI (a:  SW Utah; b:  SE 
Utah). 
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Figure 6:  NeuroShell Predictor results using CFFSI. 
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FF Classifier (Severity);  Sounding; 71% Classified Correctly 
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Figure 7:  NeuroShell Classifier results using CFFSI. 
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Figure 8:  NeuroShell Classifier ‘best result’ algorithm, using CFFSI.  
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Flagstaff, AZ Soundings NCEP/NCAR Reanalysis 
700hPa Relative Humidity (RH; %) 

700hPa Wind Speed (kts) 
700hPa Wind Direction (º) 

 

500hPa Wind Speed (kts) 
500hPa Wind Direction (º) 
500hPa Temperature (ºC) 

12-hour 500hPa Height Change (m) 
Precipitable Water (PW; mm) 

Convective Available Potential Energy (CAPE; J/kg) 
Lifted Index (LI) 

Level of Free Convection (LFC; m) 

 

Julian Day (JD) 
Previous Day’s Flash Flood Severity Indexes (FFSI) in SW and SE Utah 

Table 1:  List of variables used in the preliminary neural network analysis, using data from 
the 2003 flash flood season. 

 
Flagstaff, AZ Soundings 

700hPa Relative Humidity (RH; %) 
500hPa Wind Speed (kts) 
500hPa Wind Direction (º) 
500hPa Temperature (ºC) 

12-hour 500hPa Height Change (m) 
Precipitable Water (PW; mm) 

Convective Available Potential Energy (CAPE; J/kg) 
Julian Day (JD) 

Previous Day’s Flash Flood Severity Indexes (FFSI) 
Table 2:  List of variables used in the neural network analysis. 

 
 Actual CFFSI 

 0 1 2 3 Total 
0 533 22 7 2 564 
1 89 23 1 1 114 
2 45 4 6 1 56 
3 9 0 1 0 10 

Computed CFFSI 

Total 676 49 15 4 744 
Table 3:  Contingency table for the ‘best result’ neural network algorithm.  Shaded boxes 

indicate the number of days that were correctly classified by the algorithm. 
 

 Actual CFFSI 
 0 1 2 3 Total 

0 60 5 3 0 68 
1 11 0 0 0 11 
2 4 0 0 0 4 
3 0 0 0 0 0 

Computed CFFSI 

Total 75 5 3 0 83 
Table 4:  Contingency table for the verification of the ‘best result’ algorithm using 

sounding data from the 2004 flash flood season. 
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 Actual CFFSI 
 0 1 2 3 Total 

0 64 4 3 0 71 
1 9 2 0 1 12 
2 4 1 0 0 5 
3 1 0 0 0 1 

Computed CFFSI 

Total 78 7 3 1 89 
Table 5:  Contingency table for the verification of the ‘best result’ algorithm using 

sounding data from the 2005 flash flood season. 
 

 Actual CFFSI 
 0 1 2 3 Total 

0 675 49 14 4 742 
1 1 0 1 0 2 
2 0 0 0 0 0 
3 0 0 0 0 0 

Computed CFFSI 

Total 676 49 15 4 744 
Table 6:  Contingency table of the performance of the multiple linear regression model, 

using the sounding dataset. 
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